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Abstract
The birefringence phenomenon in the vacuum with a constant magnetic
background of arbitrary strength is considered within the framework of the
effective action approach. A new feature of the birefringence in a magnetized
vacuum is that the parallel mode, which is polarized parallel to the plane
containing the magnetic field and the photon wave vector, is no longer
transverse. We have studied this feature in detail for an arbitrary magnetic
field and provided analytic results for the ultra-strong magnetic field regime.
Possible physical implications of our results in astrophysics are discussed.

PACS numbers: 12.20.−m, 41.20.Jb, 11.10.Ef

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The theoretical investigation of nonlinear effects on light propagation, including vacuum
birefringence, has been extensively studied since early 1970s [1–4]. Recent years have
witnessed a significant growth of interest in this realm of research [5–10], especially in
the vacuum birefringence in ultra-strong fields, due to predictions of the presence of strong
magnetic fields in astrophysical objects [11–13] and the technological improvement in high-
intensity laser fields [14] above the critical strength Bc = m2c2

eh̄
� 4.4 × 1013 G. The

birefringence phenomenon in magnetized media reveals a new interesting feature related
to the fact that the polarization vector of the parallel mode of the propagating photon becomes
non-transverse, i.e., it fails to be orthogonal to the wave vector [1, 7]. One way of investigating
the vacuum birefringence is to work within the effective Lagrangian approach. Recently, the
analytic series representation for the one-loop effective action of quantum electrodynamics
(QED) has been obtained [15] on the basis of Schwinger’s integral expression for the effective
action [16]. This explicit analytical expression is helpful to investigate the light propagation
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in a magnetic field of arbitrary strength, especially in strong magnetic fields of magnitude B
above the critical value Bc.

In the present paper, we consider the birefringence in the arbitrary homogeneous magnetic
field as well as the effect of light non-transversality between the polarization vector and the
wave vector. Since this effect is small (it is of second order in the fine structure constant)
it was neglected for the field B satisfying 0 � B � O(Bc) in previous studies [1, 7]. For
an ultra-strong magnetic field regime, B � Bc, one should expect this effect will affect the
propagation of light significantly. The purpose of our paper is to investigate this effect in detail
for a magnetic field of arbitrary strength.

2. Effective action formalism

The effective action provides us with a useful bridge between the full quantum theory and
classical field theory. Once the effective action is known, in the soft photon approximation
(photon energy smaller than the electron mass), classical equations of motion can be derived
to describe the light propagation in the language of classical physics.

Let us start with the main lines of the effective action approach to light propagation in
various vacua [6, 17]. An integral expression for the one-loop effective action is given by
Schwinger [16],

Leff = −x − 1

8π2

∫ ∞

0

dt

t3
e−m2t

[
−2

3
(et)2x − 1

+ (et)2|y| coth

(
et

√√
x2 + y2 + x

)
cot

(
et

√√
x2 + y2 − x

)]
, (1)

where we have introduced the gauge and Lorentz invariants of the electromagnetic field,

x = 1
4FµνF

µν, y = 1
4FµνF̃

µν, F̃ µν = 1
2εµνρσFρσ . (2)

We employ ε0123 = −1 and ηµν = diag(−1, 1, 1, 1). We use Greek letters for the spacetime
indices (0, 1, 2, 3) and Latin letters for the spatial ones. For convenience, we use natural units
h̄ = c = 1 throughout the paper.

To obtain exact analytic results we will use an exact series representation for the one-loop
effective Lagrangian of QED [15]

L = −a2 − b2

2
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) (
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)
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(
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(
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coth
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) (
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(
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(
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)
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(
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(
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))]
, (3)

where a, b are gauge-invariant variables corresponding to the magnetic and electric fields in
an appropriate Lorentz frame respectively,

a =
√√

x2 + y2 + x, b =
√√

x2 + y2 − x. (4)

In the weak field limit the expansion of the integral in (1) produces the well-known
Euler–Heisenberg effective Lagrangian [6, 18]:

L̃E−H = −x + c̃1x
2 + c̃2y

2, c̃1 = 8α2

45m4
, c̃2 = 14α2

45m4
, (5)
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where α = e2

4πε0
= 1

137.036 is the fine structure constant. In our choice of natural units we set

ε0 = 1, so that the corresponding value of the electron charge is e = √
4πα.

We will follow the effective action approach [17] to study the light propagation effects in
nonlinear electrodynamics. We assume that the soft photon approximation, the linearization
procedure and the restricted eikonal approximation make sense [17]. It is suitable to split the
total electromagnetic field into the background field Fµν and the propagating photon fµν with
the vector potential aµ(k) and the wave vector kµ. We keep the linear approximation with
respect to fµν in equations of motion. After these two procedures the equations of motion
corresponding to the full effective action lead to an eigenvalue equation for the propagating
modes,

Aµνεν = 0, (6)

where εν ≡ aν/(aµaµ)1/2 is a unit polarization vector of the soft photon, the symmetric tensor
Aµν is given by

Aµν ≡ 2
∂2L

∂Fµα∂Fνβ

∣∣∣∣
background

kαkβ

= c1F
µαF νβkαkβ + c2F̃

µαF̃ νβkαkβ + c3(δ
µνk2 − kµkν) + c5(F

µαF̃ νβ + F̃ µαF νβ)kαkβ,

(7)

and the derivative functions are defined by

c1 ≡ 1
2∂2

xL, c2 ≡ 1
2∂2

yL, c3 ≡ 1
2∂xL, c4 ≡ 1

2∂yL, c5 ≡ 1
2∂xyL. (8)

It can be shown [8] that equation (6) is indeed equivalent to the light cone condition obtained
in [6] without using the averaging over polarization modes.

Solutions of equation (6) represent the dynamically allowed polarization modes.
Nontrivial solutions to this equation exist if a generalized Fresnel equation is satisfied [19]:

det Aµν(k) = 0. (9)

In fact, it is a scalar equation for k and thus implicitly represents the dispersion relation for
the light propagation in the polarized QED vacuum. A suitable choice of gauge fixing for aµ

simplifies the eigenvalue problem (6). We will use a physical temporal gauge a0 = ε0 = 0,
since it directly links the polarization vector �ε to the electric field of the propagating photon
�e, �ε = �e/|�e|. With this gauge the eigenvalue equation (6) splits into the equation

A0iεi = 0, (10)

and the reduced eigenvalue problem

Aij εj = 0. (11)

The latter implies the following condition:

det(Aij ) = 0. (12)

There are two independent physical modes of the eigenvalue problem (11), so that the space
of polarizations is at most two-dimensional [4, 17].

3. Vacuum birefringence in magnetic field

In this section, we first obtain the general equations for the light velocity and polarization vector.
Then we apply these equations to both the truncated one-loop effective Euler–Heisenberg
Lagrangian, equation (5), and the series representation for the one-loop effective Lagrangian,
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Figure 1. Two modes of light propagation in a magnetized vacuum. δ = 〈(�ε‖, �k) − π
2 . �ε⊥ is

orthogonal to the plane containing �B and �k.

equation (3), in both the weak and strong magnetic field regions. For the case of ultra-strong
magnetic field we derive asymptotic formulae as well.

Without loss of generality, we choose the magnetic field directed along the z-axis,
�B = (0, 0, a). We assume the wave vector �k lies in the plane xOz, so that k̄µ = kµ/|�k| =
(v, sin θ, 0, cos θ) (figure 1), and we will not distinguish between k̄ and k below. Hereafter the
coefficient functions ci in (8) are taken in the limit of vanishing electric field, b → 0 (y → 0).
Since in standard QED the effective Lagrangian Leff is an even function of y we find

c4 = 0, c5 = 0. (13)

The explicit solution to the eigenvalue equation (11) provides two independent polarization
vectors, �ε⊥ and �ε‖, corresponding to the orthogonal and parallel modes respectively,

�ε⊥ = (0, 1, 0), v2
⊥ = 1 +

c1a
2 sin2 θ

c3
,

�ε‖ = 1

ρ(θ)
((c3 − a2c2) cos θ, 0,−c3 sin θ), v2

‖ = 1 − c2a
2 sin2 θ

c2a2 − c3
,

(14)

where ρ(θ) =
√

c2
3 + a2c2(a2c2 − 2c3) cos2 θ is the normalization factor. One can check that

the solution is consistent with equation (10). It is worthwhile noting that the polarization vector
�ε‖ is not orthogonal to the wave vector �k. The deviation angle defined by δ = � (�ε‖, �k) − π

2
takes the form

cot δ = cot θ − 2c3

a2c2 sin 2θ
. (15)

The existence of δ is analogous to the light propagation in crystal optics, in which the non-
orthogonality between the photon electric field and the wave vector often occurs. In some
sense, the vacuum in magnetic field behaves as a ‘uniaxial crystal’.

Now we can apply the above formal equations to the one-loop effective Euler–Heisenberg
Lagrangian, equation (5). A simple calculation leads to the following results

v2
⊥ = 1 − 2a2c̃1 sin2 θ

1 − a2c̃1
, v2

‖ = 1 − 2a2c̃2 sin2 θ

1 − a2(c̃1 − 2c̃2)
, cot δ = cot θ +

1 − a2c̃1

a2c̃2 sin 2θ
.

(16)

We apply the above formal equations to the exact one-loop effective Lagrangian,
equation (3). One can calculate the coefficient functions ci in terms of the main
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function G(a) [9]:

c1 = 1

2a3
(a∂2

aL − ∂aL), c2 = 1

2a3
(a∂2

bL + ∂aL),

c3 = 1

2a
∂aL, c4 = 1

2a
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∂aL = −a − e2a

2π4
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4π4
G′(a),

∂bL = 0, ∂2
aL = −1 − e2

2π4
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∂2
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36π2m4
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e4a3

3π4m4
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6π4m4
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(17)

where

G(a) =
∞∑

n=1

1

n2
g

(
nπm2

ea

)
, g(x) = ci(x) cos x + si(x) sin x. (18)

The function G(a) determines the one-loop contribution to the effective Lagrangian with
a pure magnetic background [9], and it can be written in terms of the generalized Hurvitz
ζ -function as well.

With equations (14) and (17), the light velocities and the angle δ can be expressed as
follows

v2
⊥ = 1 +

e2a
4π4 sin2 θ(3G′(a) + aG′′(a))

1 + e2

4π4 (2G(a) + aG′(a))
,

v2
‖ =

(
1 +

e4a2 cos2 θ

36π2m4
+

e2 sin2 θ

2π4
G(a) +

(
e4a3 cos2 θ

3π4m4
+

e2a sin2 θ

4π4

)
G′(a)

+
e4a4

6m4π4
cos2 θG′′(a)

)
·
(

1 +
e4a2

36π2m4
+

e4a3

3π4m4
G′(a) +

e4a4

6m4π4
G′′(a)

)−1

,

cot δ = cot θ +
csc θ sec θ

(
1 + e2

2π4 G(a) + e2a
4π4 G

′(a)
)

e4a2

36π2m4 − e2

2π4 G(a) +
(

e4a3

3π4m4 − e2a
4π4

)
G′(a) + e4a4

6m4π4 G′′(a)
. (19)

In order to confirm our results, we compare them with the results obtained in the past
for the particular case of vacuum birefringence in the weak field limit. For θ = π

4 the light
velocities for (⊥, ‖)-modes are plotted in figures 2(a) and (b). The dependence of δ on the
field strength a and on θ is shown in figures 2(c) and (d), respectively.

For the case of weak field regime, the δ angle is quite small as expected, δ � a2c̃2 sin 2θ .
For moderate magnetic fields satisfying the condition − c3

c2a2 � 1 we have a simple relation

δ � −c2a
2

2c3
sin 2θ. (20)

Now, let us consider the light velocity in the strong field region. From the asymptotic
behaviour of the function G(a) [9],

G(a) = −π2

6

(
ln

ea

m2
+ d1

)
− π2m2

2ea

(
ln

ea

πm2
+ 1

)
− π2m4

4e2a2

(
ln

2ea

πm2
− γ +

5

2

)
,

d1 = −γ − ln π +
6

π2
ζ ′(2) = −2.29191 . . . , (21)
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(a)

(c)

(b)

(d )

Figure 2. Light propagation in the weak magnetic field, �B = (0, 0, a). (a) Light velocity of
⊥ mode; (b) light velocity of ‖ mode; (c) the dependence of δ on the field strength ã at θ = π

4 ;
(d) the dependence of δ on θ at ã = 0.01 (the two curves are quite adjacent). (i) An exact
one-loop approximated result; (ii) the result in weak field approximation; (iii) the result obtained
in [9]. The dimensionless magnetic field strength ã = a

m2 is measured in units of electron mass;

the critical value is ãc = 1
e

� 3.3. The magnetic field strength B in standard units is given by

B = ã × √
4παBc.

one can derive the following asymptotic equations for the light velocities v⊥,‖ and angle δ in
an ultra-strong magnetic field:

v2
⊥ � 1 − e2

12π2

(
ln ea

m2 + d1 + 1
2 + sin2 θ

)
1 − e2

12π2

(
ln ea

m2 + d1 + 1
2

)
= 1 + O(Bc/a),

v2
‖ � 1 − e2

12π2

(
ln ea

m2 + d1 − d2 cos2 θ + 1
2

)
+ ae3

12π2m2 cos2 θ

1 − e2

12π2

(
ln ea

m2 + d1 − d2 + 1
2

)
+ e3a

12π2m2

= cos2 θ + O(Bc/a),

cot δ � cot θ − 2 ln ae
m2 + 1 + 2d1 − 24π2

e2

sin 2θ
(

ae
m2 + d2

) = cot θ − 1

sin 2θ
O(Bc/a),

d2 = d1 − 1

2
+ γ + ln

π

2
= −1.76311 . . . . (22)

Comparing these asymptotic formulae with the results obtained in [9], one can conclude
that the velocities of the orthogonal mode coincide while the velocities of the parallel mode
differ essentially in the asymptotic limit. The deviation angle δ can be quite large within

[
0, π

2

)
.

When θ approaches the value π
2 the angle δ vanishes, i.e., the light becomes transverse.

It is well known that the strength of an electric field is limited by the ‘Klein Catastrophe’
while the strength of a magnetic field is not. But there are several other physical limits
that apply to magnetic fields [20, 21]. For example, diverse interactions with photons and
matter deplete energy and momentum from the neutron star field, limiting its strength to
Bmax < 1016–1018 G [21]. This typical value of order 1018 G determines the range of strength
of the considered magnetic field.
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(a)

(c)

(b)

(d )

Figure 3. Light propagation in strong magnetic field. (a) Light velocity of ⊥ mode, the upper is
the exact one-loop approximated result while the lower is the asymptotic result; (b) light velocity
of ‖ mode; (c) the dependence of δ on the field strength ã at θ = π

4 ; (d) the dependence of δ on
θ at ã = 5 × 103. (In (b), (c) and (d) the two curves of the exact result and the asymptotic result
are quite adjacent.) The dimensionless magnetic field strength ã = a

m2 is measured in units of

electron mass. The maximal terms of numerically calculating G(a) are 2 × 104 for the maximal
field.

In figures 3(a) and (b) the light velocities (v⊥,‖) at θ = π
4 are presented in the strong field

regime. The dependence of δ on the field strength a and on θ is shown in figures 3(c) and (d),
respectively.

The results are still reasonable even in the asymptotic limit since the phase velocities keep
bounded, 0 � v⊥,‖ � 1. In fact, the orthogonal mode propagates as in the trivial vacuum,
independent of the wave vector. On the other hand, the phase velocity of the parallel mode
is directly associated with the direction of propagation. The propagation perpendicular to
the magnetic field

(
v‖

(
θ = π

2

) = 0
)

is strictly forbidden, while the parallel propagation is
preferred (v‖(θ = 0) = 1), in agreement with the previous results [7]. As a result, photons in
the ‖ mode eventually propagate along the magnetic field, regardless of their incidence angle θ .
So that, since δ = θ for θ ∈ [

0, π
2

)
in the asymptotic limit, the polarization vector of the

‖ mode is mostly directed along the x axis (except for θ = π
2 ), irrelevant to the wave vector.

Using the equations for light the velocities (14), one can derive the corresponding
refraction indices

n2
⊥,‖ = 1

v2
⊥,‖

. (23)

With equation (22) one can approximate the refraction index by

n⊥ � 1, n‖ �
(

1 + e3a
12π2m2

1 + e3a
12π2m2 cos2 θ

) 1
2

, (24)

in agreement with results obtained before [2, 22].
Our results can be helpful in the study of the light propagation in a pure electric field

background or crossed field background ( �E⊥�B, | �E| = | �B|). For these two cases it is readily
verified that y = 0 still holds and thus c4 = c5 = 0. So the calculation is straightforward by
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analogy with the above results. For example, in a pure electric field, interchanging of c1 and
c2 in (14) will give the desired results.

4. Conclusion

We have analyzed the light propagation in a constant magnetic field of arbitrary strength.
Within the effective action approach we have investigated the features of the propagation
modes in both the weak and strong field regimes. We have demonstrated that the polarization
vector of the parallel mode is no longer orthogonal to the wave vector. The effect of non-
transversality is enhanced in the strong field regime and significantly affects the asymptotic
behaviour of the light velocity. The analytic asymptotic formulae of light velocities and
deviation angle δ for the strong magnetic field have been obtained.

We would like to discuss two potential applications of our results in astrophysics. The first
one is related to the magnetic lensing effect which appears when the fields are significantly
stronger than Bc (see, e.g., [11]). For example, for at least five known gamma pulsars the
magnetic field exceeds Bc, and for magnetars the magnitude of the magnetic field is estimated
to be of order 1014–1015 G [12]. The main result of the lensing effect is that the effective
surface areas of the astrophysical object measured by the two polarization states are different.
Since the parallel mode is no longer transverse, the measurement of its polarization responses
accordingly. Especially, the dependence of the deviation angle δ on the incidence angle θ

should be important in the determination of the effective surface area of polarizations. This
consequence in the measurement will be strengthened in the strong magnetic field. From
the numerical results in figure 2, one may argue that the new feature of non-transversality
is negligible at B ∼ Bc compared to the traditional approach; however, for astronomical
distances, even a very small deviation can lead to essentially different observations. Another
possible application might be related to the effect of strongly enhanced mode coupling in light
scattering (see, e.g., [23, 24]). When photons propagate through scattering in the magnetized
plasma they can change their polarization modes as well as their directions and energy. This
effect can change the total spectrum and angular distribution of radiation from the neutron
star. When the photons interact with both the electrons and the protons in the plasma, a careful
analysis of photon polarization effects is necessary for the precise calculation. We hope that
our results can provide a better quantitative description of these effects and possibly other
astrophysical phenomena related to birefringence in ultra-strong magnetic fields.
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